1. MATLAB PROGRAM 1 : Matrix to Linear system of Equation % 1) Matrix to Linear system of Equation % Take matrix A from the user A = input('Enter your matrix A of order m * n: ','s'); A = str2num(A); % Convert the string input to a numeric matrix % Get the number of rows and columns of matrix A [m, n] = size(A); % assign values to m & n % Prompt user to enter Matrix B B = input('Enter your matrix B of order m * 1: ','s'); B = str2num(B); % Convert the string input to a numeric matrix % Check if the number of rows in A matches the number of rows in B if size(B, 1) ~= m error('Error: The number of rows in Matrix B must match the number of rows in Matrix A.'); end % Initialize symbolic variables vars = sym('x', [1, n]); % Creates symbolic variables x1, x2, ..., xn X = vars.'; % Transpose symbolic variable array to a column vector % Define the system of linear equations equations = A * X == B; % Solve the system of equations solution = solve(equations, X); % Display the solution disp('The solution to the system of equations is:') disp(solution) disp('The system of equations is set up successfully.'); -------------------------------------------------------------------------------------------------- MATLAB PROGRAM 2 : System of Linear Equation to Matrix % Equation to Matrix % Prompt user for the number of variables num_vars = input('Enter the number of variables: '); % Initialize symbolic variables vars = sym('x', [1, num_vars]); % Prompt user for the number of equations num_eqns = input('Enter the number of equations: '); % Inform the user about the symbolic variables fprintf('Kindly enter equations using the following variables: '); disp(vars); % Initialize an empty symbolic array to hold equations equations = sym([]); % Loop to input equations for k = 1:num_eqns % Ask for the equation in string format eqStr = input(sprintf('Enter equation %d (e.g., x1 + 2*x2 + x3 = 5): ', k), "s"); % Append the equation to the symbolic array equations(end+1) = str2sym(eqStr); end % Convert the equations to matrix form [A|B] [A, B] = equationsToMatrix(equations, vars); % Display the results disp('Matrix A (coefficients):'); disp(A); disp('Matrix B (constants):'); disp(B); ---------------------------------------------------------- MATLAB PROGRAM 3 : Unique, Infinite & No solution of Linear System A = input('Enter your matrix A of order m*n: '); B = input('Enter your column matrix B of order m*1: '); % Ensure B is a column vector and its size matches A's rows [m, n] = size(A); if size(B, 1) ~= m || size(B, 2) ~= 1 error('Matrix B must have dimensions m*1, where m matches the number of rows in A.'); end % Construct augmented matrix A_B = [A B]; % Augmented matrix % Calculate ranks r1 = rank(A_B); % Rank of augmented matrix r2 = rank(A); % Rank of coefficient matrix % Determine nature of the solution if r1 == r2 && r1 == n disp('Given system is consistent and has a unique solution'); elseif r1 == r2 && r1 < n disp('Given system is consistent and has infinite solutions'); else disp('Given system is inconsistent and has no solution'); end ------------------------------------------------------------- MATLAB PROGRAM 4 : Unique, Infinite & No solution of Linear System syms x y z equations = [1*x + 2*y + 3*z == 3, 3*x + 6*y + 9*z == 9, 7*x + 8*y + 10*z == 34]; % Solve the system of equations sol = solve(equations, [x, y, z], 'ReturnConditions', true); % Extract solutions and conditions x = sol.x; y = sol.y; z = sol.z; conditions = sol.conditions; % Display the solutions disp('Solution for x:'); disp(x); disp('Solution for y:'); disp(y); disp('Solution for z:'); disp(z); % Display any conditions disp('Conditions for the solution: ----------------------------------------------------------------- MATLAB PROGRAM 5 : Linearly Dependent & Independent Vectors num_vect = input('Enter the number of vectors: '); % Initialize an empty matrix to hold vectors vect_mat = []; for k = 1:num_vect vector = input(sprintf('Enter your %d vector as a row vector: ', k)); % Validate that all vectors have the same dimension if ~isempty(vect_mat) && length(vector) ~= size(vect_mat, 2) error('All vectors must have the same dimension.'); end vect_mat = [vect_mat; vector]; % Append the vector row-wise end % Transpose the matrix to have vectors as columns A = vect_mat'; % Check the rank of the matrix if rank(A) == num_vect disp('Vectors are linearly independent (LI)'); else disp('Vectors are linearly dependent (LD)'); end -------------------- INPUT: Enter the number of vectors: 3 Enter your 1 vector as a row vector: [1, 2, 3] Enter your 2 vector as a row vector: [4, 5, 6] Enter your 3 vector as a row vector: [7, 8, 9] -------------------- ------------------------------------------------- MATLAB PROGRAM 6 : Eigen Values & Eigen Vectors A = input('Enter the square matrix A: '); % Check if A is a square matrix [m, n] = size(A); if m ~= n error('Your matrix is not a square matrix.'); end % Compute eigenvalues and eigenvectors [V, D] = eig(A); % V is the eigenvector matrix, D is the diagonal matrix of eigenvalues % Display eigenvalues and corresponding eigenvectors for k = 1:m fprintf('The %d eigenvalue is: %f\n', k, D(k, k)); fprintf('The corresponding eigenvector is:\n'); disp(V(:, k)); end -------------------- INPUT: Enter the square matrix A: [2, 0; 0, 3] -------------------- ------------------------------------------------- MATLAB PROGRAM 7 : Limit / Indeterminate Forms % Symbolic Variable syms x % Example Limit Calculations fprintf('Example Calculations:\n'); fprintf('Limit of cos(x) as x -> pi/2 (radians): %f\n', limit(cos(x), x, pi/2)); fprintf('Limit of sin(x) as x -> 90 degrees: %f\n', limit(sin(x), x, pi/2)); % Fixed 'sind' to 'sin' and angle in radians % Interactive Programming g = input("Enter the function g(x) as a string (e.g., 'x^2 + 3*x - 5'): ", 's'); g = str2sym(g); % Convert the input string to a symbolic expression a = input("Enter the value 'a' for which limit x tends to 'a': "); % Calculate the Limit h = limit(g, x, a); % Display the Result fprintf("The limit of the function g(x) = %s as x tends to %g is: %s\n", char(g), a, char(h)); -------------------- INPUT: Enter the function g(x) as a string (e.g., 'x^2 + 3*x - 5'): x^2 + 2*x + 1 Enter the value 'a' for which limit x tends to 'a': -1 -------------------- ------------------------------------------------- MATLAB PROGRAM 8 : Taylor's and Maclaurin's Theorem % 8) Taylor's and Maclaurin's Theorem % Syntax Examples disp('Syntax Examples:'); disp(taylor(exp(x), x, 2)); % Taylor expansion around x = 2 disp(taylor(exp(x), x, 0)); % Maclaurin's series (a = 0) disp(taylor(exp(x), x, 0, 'Order', 10)); % Expand function up to degree 9 % Sympref Settings % Uncomment to control polynomial display style % sympref("PolynomialDisplayStyle", "ascend"); % Expand series in ascending powers % sympref("PolynomialDisplayStyle", "descend"); % Expand series in descending powers % sympref("PolynomialDisplayStyle", "default"); % Expand series in default setting % Expansion of Function with Multiple Variables syms x y z disp(taylor(sin(y) + cos(z), y, 0)); % Expand in powers of y disp(taylor(sin(y) + cos(z), z, 0)); % Expand in powers of z disp(taylor(sin(y) + cos(z), [y, z], 0)); % Expand in powers of y and z % Interactive Programming f = input("Enter the function f(x): ", 's'); a = input("Expansion at point a: "); b = input("Order of the expansion is b: "); % Convert function to symbolic expression f = str2sym(f); % Taylor Expansion g = taylor(f, x, a, 'Order', b); % Display the Result fprintf("The expansion of f(x) = %s at x = %i is:\n%s\n", char(f), a, char(g)); ----------------------------------- INPUT Enter the function f(x): x^2 + 3*x + 1 Expansion at point a: 1 Order of the expansion is b: 5 ------------------------------------ --------------------------------------------------- MATLAB PROGRAM 9 : Successive Differentiation % Successive Differentiation % Syntax syms x y % Symbolic variables diff(x^3 - 2*x, x, 2) % Differentiate function x^3 - 2*x 2 times w.r.t. x diff(x^2*y - 3*x*y^3, x, 1) % First-order partial derivative w.r.t. x diff(x^2*y - 3*x*y^3, y, 2) % Second-order partial derivative w.r.t. y % Interactive Programming syms x % Define symbolic variable x for interactive programming f = input("Enter the function f(x): ", 's'); % Input as string f = str2sym(f); % Convert input string to symbolic expression n = input("Enter the order of the derivative n: "); for i = 1:n f_d = diff(f, x, i); % Successive differentiation fprintf("The %i derivative of the function f(x) is %s \n", i, char(f_d)); end ------------------- INPUT Enter the function f(x): x^3 - 2*x Enter the order of the derivative n: 2 ------------------- ------------------------------------------------------ MATLAB PROGRAM 10 : Successive Differentiation Using Partial % 10) Successive Differentiation Using Partial Fraction syms x f = input('Enter your function f(x): ', 's'); % Input function as a string f = str2sym(f); % Convert input string to symbolic expression % Perform partial fraction decomposition f_pf = partfrac(f); % Decompose into partial fractions fprintf('The partial fraction of the function f(x) is: %s\n', char(f_pf)); % Input the required order of derivative n = input('Enter the required order of derivative n: '); for i = 1:n f_d = diff(f_pf, x, i); % Successive differentiation fprintf('The %i derivative of the function f(x) is: %s\n', i, char(f_d)); end ------------------- INPUT Enter your function f(x): (x^2 + 2*x + 1)/(x^2 - x) Enter the required order of derivative n: 2 ------------------- ------------------------------------------------------ MATLAB PROGRAM 11 : Exact &Non Exact Differential Equation % 11) Exact & Non-Exact Differential Equation syms x y C % Define M(x, y) and N(x, y) M = input('Enter M(x, y): ', 's'); % Input as string N = input('Enter N(x, y): ', 's'); % Input as string M = str2sym(M); % Convert to symbolic N = str2sym(N); % Convert to symbolic % Check for exactness dM_dy = diff(M, y); % Partial derivative of M with respect to y dN_dx = diff(N, x); % Partial derivative of N with respect to x disp(['dM/dy = ', char(dM_dy)]); disp(['dN/dx = ', char(dN_dx)]); if dM_dy ~= dN_dx disp('Given differential equation is Non-Exact.'); % Input Integrating Factor IF = input('Enter integrating factor mu(x, y): ', 's'); % Input as string IF = str2sym(IF); % Convert to symbolic % Modify M and N with the integrating factor M = M * IF; N = N * IF; % Recalculate after applying the integrating factor dM_dy = diff(M, y); dN_dx = diff(N, x); disp('Modified functions:'); disp(['M(x, y): ', char(M)]); disp(['N(x, y): ', char(N)]); if dM_dy == dN_dx disp('The modified differential equation is now Exact.'); else disp('Error: Even with the integrating factor, the equation is not Exact.'); return; end end disp('Given differential equation is Exact.'); % Solve the Exact Differential Equation M_intx = int(M, x); % Integrate M with respect to x N_inty = int(N - diff(M_intx, y), y); % Integrate remaining terms with respect to y GS = M_intx + N_inty; % General solution % Display the General Solution fprintf('The General Solution (GS) is: %s = C\n', char(GS)); ------------------- INPUT Enter M(x, y): y*exp(x) Enter N(x, y): exp(x) OR Enter M(x, y): 3*x^2*y Enter N(x, y): x^3 + y ------------------- -------------------------------------------------------------------- MATLAB PROGRAM 12: Heat Flow % 12) Heat Flow syms T(x) x % Input parameters x1 = input('Enter the inner radius of the pipe (x1): '); x2 = input('Enter the outer radius of the pipe (x2): '); T1 = input('Enter the inner temperature of the pipe (T1): '); T2 = input('Enter the outer temperature of the pipe (T2): '); k = input('Enter coefficient of thermal conductivity (k): '); % Calculate heat flux/loss (q) q = -2 * pi * k * (T2 - T1) / log(x2 / x1); % Display the heat flux fprintf('Heat flux (q) = %.4f\n', q); % Input the distance normal to the surface a = input('Enter distance from the center (a): '); % Validate that 'a' lies within the bounds of the pipe if a < x1 || a > x2 error('Distance "a" must lie between the inner and outer radius of the pipe (x1 <= a <= x2).'); end % Calculate temperature at distance 'a' Temp = ((T2 - T1) / log(x2 / x1)) * log(a / x1) + T1; % Display the temperature fprintf('Temperature at distance a (Temp) = %.4f\n', Temp); ---------------------------- INPUT Enter the inner radius of the pipe (x1): 1 Enter the outer radius of the pipe (x2): 2 Enter the inner temperature of the pipe (T1): 300 Enter the outer temperature of the pipe (T2): 400 Enter coefficient of thermal conductivity (k): 50 Enter distance from the center (a): 1.5 ---------------------------- MATLAB PROGRAM 13 : Solving higher order LDE % 13) Solving Homogeneous Linear Differential Equation (LDE) % Define symbolic variables and differential equation syms x y(x) % Example predefined ODE ode = diff(y, x, 2) + 5*diff(y, x) + 6*y == 0; % Solve and expand the solution for the example ODE sol = dsolve(ode); disp('Solution for the predefined ODE:'); disp(expand(sol)); % Interactive Programming disp('Interactive Mode: Solve your own ODE'); ode = input('Enter the Differential Equation (use y(x) for dependent variable): ', 's'); ode = str2sym(ode); % Convert input string to symbolic expression % Solve and display the expanded solution sol = dsolve(ode); disp('Solution for the entered ODE:'); disp(expand(sol)); ---------------------------- INPUT Enter the Differential Equation (use y(x) for dependent variable): diff(y,x,2) + 7*diff(y,x) + 10*y == 0 ---------------------------- % 14) Solving Non-Homogeneous Linear Differential Equation (LDE) % Define symbolic variables and example differential equation syms x y(x) % Predefined Example ODE ode = diff(y, x, 2) + 3*diff(y, x) + 2*y == exp(exp(x)); % Solve and expand the solution for the example ODE sol = dsolve(ode); disp('Solution for the predefined ODE:'); disp(expand(sol)); % Interactive Programming disp('Interactive Mode: Solve your own ODE'); ode = input('Enter the Differential Equation (use y(x) for dependent variable): ', 's'); ode = str2sym(ode); % Convert input string to symbolic expression % Solve and display the expanded solution sol = dsolve(ode); disp('Solution for the entered ODE:'); disp(expand(sol)); ---------------------------- INPUT Enter the Differential Equation (use y(x) for dependent variable): diff(y,x,2) + 4*diff(y,x) + 3*y == sin(x) ---------------------------- % 15) Application on Electric Circuit % Step I: Generate differential equation from the given electric circuit % Define symbolic variables syms t q(t) % Define the ODE based on the given circuit % d^2q/dt^2 + 3*dq/dt + 2*q = sin(t) ode = diff(q, t, 2) + 3*diff(q, t) + 2*q == sin(t); % Display the ODE disp('Differential Equation for the Electric Circuit:'); disp(ode); % Step II: Solve the ODE using dsolve (higher-order LDE solver) sol = dsolve(ode); % Expand the solution for better readability expanded_sol = expand(sol); % Display the solution disp('Solution for the given ODE:'); disp(expanded_sol);